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Abstract 
In the eighteenth century, scientists discovered the ingredients of basic quantum field theory. In 

those times quantum physics played no role. In the twentieth century, these ingredients were 

forgotten and stayed ignored.  

This paper introduces two categories of super-tiny dark objects that represent the most basic field 

quanta. Warps represent a tiny bit of energy. Clamps represent a tiny bit of mass. Observers cannot 

perceive these objects as individual items. The objects are the tiny dark objects that science is still 

missing. The LHC and its successors will never be able to detect them. 

The paper shows that one-shot triggers can expand continuums and the expansion can represent an 

amount of mass. 

Introduction 
Quantum field theory requires a continuum that can be deformed or vibrated and actuators that 

cause this deformation or vibration. Next, the activity of these actuators must be quantized. Thus, 

the strength of the deformation or vibration occurs in a set of fixed values. Deformation or vibration 

can be temporarily or persistent. 

Field dynamics 

A function for which both the parameter space and the target space are multi-dimensional describes 
a continuum. Dynamics requests a progression parameter, and the spatial part requests a multi-
dimensional spatial parameter. Quaternions have the advantage that they combine storage for the 
progression part, and the spatial part and quaternionic calculus defines a multiplication procedure 
for the combination of the two. Quaternions can also store the scalar part and the vector part of the 
target value of a quaternionic function. Quaternions can describe the behavior of dynamic fields via 

quaternionic differential calculus. Partial second order differential equations describe the 
interaction between point-like artifacts and quaternionic continuums. 

The combination of a quaternionic infinite dimensional separable Hilbert space and its unique non-

separable companion Hilbert space that embeds its separable partner offers the playground where 

this interaction can take place. This playground stores separate quaternions in eigenspaces of 

operators that reside in the separable Hilbert space and can store quaternionic continuums as 

eigenspaces of operators that reside in the non-separable Hilbert space. Quaternionic functions 

define these continuums. 

A subspace that scans this base model as a function of a selected progression value represents the 

static status quo of the model and splits it between a historical part, the current static status quo, 

and a future part. 

The embedding maps the discrete quaternions onto an embedding continuum. The embedding 

process occurs inside the scanning subspace. 
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Solutions of the differential equations 
The dynamic solutions of the homogeneous second order partial differential equations do not occur 

spontaneously. Actuators that determine what kind of solution results generate them. For example, a 

periodic harmonic actuator causes wave solutions of a homogeneous second order partial 

differential equation, which is therefore known as the wave equation. Also, another, quite similar 

homogeneous second order partial differential equation exist that does not offer waves as its 

solutions. This equation splits into two first order partial differential equations. Both homogeneous 

second order partial differential equations offer solutions in the form of shock fronts that one-shot 

actuators trigger. These solutions occur in two versions. Warps are one-dimensional shock fronts 

that during travel keep their amplitude. Clamps are spherical shock fronts that quickly fade away 

because their amplitude diminishes as 1/r with distance r from the trigger location. In the meantime, 

clamps integrate into the Green’s function of the carrier field, which means that they temporarily 

deform the carrier. Warps carry a standard bit of energy and clamps carry a standard bit of mass. 

These facts make them the most basic quanta of the carrier field. Point-like actuators trigger the 

warps and the clamps. That does not mean that more powerful triggers cannot trigger 

correspondingly larger shock fronts. An isotropic explosion may cause a gravitational spherical shock 

front. Every triggered vibration may cause a more permanent expansion of the embedding 

continuum and it may represent an amount of mass. 

Super-tiny dark objects 
Warps and clamps form two categories of super-tiny objects that in separation cannot be perceived. 

Only organized in huge collections, these objects become observable. For example, if emitted at 

equidistant instants, the warp strings become a frequency, and if these strings obey the Einstein-

Planck relation, then the strings implement the functionality of photons.  

If recurrently regenerated by dense and coherent swarms of hop landing location triggers, the 

clamps become noticeable as elementary particles.  

Less coherent assemblies of warps can create a noticeable amount of dark energy. Less coherent 

assemblies of clamps can create a noticeable amount of dark mass. 

Elementary particles are elementary modules. Together these elementary modules generate all 

other modules and the modules construct modular systems. 

Ensuring coherence 

A private mechanism that applies a stochastic process, which owns a characteristic function 
generates a hopping path and a hop landing location swarm. The characteristic function acts as a 
displacement generator and ensures that the process generates a coherent swarm, which moves as a 
single unit. The location density distribution of the swarm is the Fourier transform of the 
characteristic function and equals the squared modulus of the wavefunction of the object that the 
swarm represents. 

The generated swarms represent elementary modules. They show both particle and wave behavior. 
The characteristic function of the stochastic process explains the wave behavior. 

Elementary modules reside on private platforms that own a private parameter space that a version 
of the quaternionic number system generates. The platforms float over a background parameter 
space, which the version of the quaternionic number system that the Hilbert spaces use to define 
their inner product generates. The differences in ordering symmetry between parameter spaces give 
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rise to symmetry-related charges. These charges locate at the geometrical centers of the platforms 
and produce symmetry-related fields. 

The elementary modules inherit the properties of the platforms on which they reside. In this way, a 
range of different elementary module types exist. 

With every new embedded location the stochastic mechanisms expand the embedding continuum. 

Modules and spectral binding  

Together the elementary modules constitute all other modules and the modules constitute modular 
systems. 

Also here, stochastic processes that own a characteristic function generate the footprints of 
modules. Therefore, the module also moves as a single unit. 

The characteristic function of the module equals the superposition of the characteristic functions of 
the components of the module. The superposition coefficients determine the internal locations of 
the components. These coefficients may oscillate. 

The superposition installs a very strong kind of spectral binding. 

Gravity and attractive symmetry-related charges may add to the effect of spectral binding. 

Recurrent regeneration 
Clamps quickly fade away and therefore, clamps require the recurrent regeneration of the objects 

that they generate. The regeneration cycle determines how much clamps, thus how much mass the 

generated object owns. Thus, the current static status quo is surrounded by a particle regeneration 

fabric.  

History 
The solutions of the wave equation are known for more than two and a half centuries [1]. In those 

times physicists where not aware of the quantization of space, but some awareness was growing 

about the quantization of wave packages. The shock fronts are not waves. They do not feature a 

frequency. Wave packages disperse when they move. Shock fronts do not disperse.  

It is strange that during the development of quantum physics the shock fronts escaped the attention 

of the early quantum physicists. Otherwise, basic quantum field theory would have become a 

straightforward part of quantum theory. 

Currently LIGO and Virgo are observing gravitational waves. The cause is the end of the mutual 

rotation around a common center of two black holes. The subsequent explosion need not be 

isotropic. Isotropic one-shot triggers cause spherical shock fronts. Still the phenomenon can deform 

our living space and may permanently expand this continuum. This phenomenon may represent an 

amount of mass because it permanently deforms the carrier continuum. 

Mathematics 

Partial quaternionic differential equations that apply the quaternionic nabla ∇ describe the interaction 
between a field and a point-like artifact [2]. 
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∇ ≡ {∂/∂τ, ∂/∂x, ∂/∂y, ∂/∂z} 

∇ ≡ {∂/∂x, ∂/∂y, ∂/∂z} 

∇ᵣ ≡ ∂/∂τ 

τ is progression or proper time. 

In the quaternionic differential calculus, differentiation with the quaternionic nabla is a quaternionic 
multiplication operation: 

c = cᵣ + c= ab ≡ (aᵣ + a) (bᵣ + b) = aᵣbᵣ − 〈a,b〉 + abᵣ + aᵣb ± a×b 
 
Here the real part gets subscript ᵣ and the imaginary part is written in bold face. 
 
The right side covers five different terms. 
〈a,b〉 is the inner product. 
a×b is the external product. 
± indicates the choice between right and left handedness. 
Now the partial differential equation that describes the first order behavior of a continuum is given by: 

 

Φ = ϕᵣ + Φ = ∇ψ ≡ (∇ᵣ +∇) (ψᵣ + ψ) = ∇ᵣψᵣ − 〈∇, ψ 〉 + ∇ψᵣ + ∇ᵣ ψ ± ∇× ψ 

ϕᵣ = ∇ᵣψᵣ − 〈∇, ψ 〉 

Φ =∇ψᵣ + ∇ᵣ ψ ± ∇× ψ 

〈∇, ψ 〉 is the divergence of ψ 

∇ψᵣ is the gradient of ψᵣ 

∇× ψ is the curl of ψ 

E=−∇ψᵣ−∇ᵣ ψ 

B=∇× ψ 

Double differentiation leads to the second order partial differential equation: 

ρ = ∇*ϕ = (∇ᵣ−∇) (∇ᵣ+∇) (ψᵣ+ ψ) = (∇ᵣ∇ᵣ+〈∇, ∇〉) (ψᵣ+ ψ)= ρᵣ+J  

This equation splits into two first order partial differential equations Φ = ∇ψ and ρ = ∇*ϕ. 

ρᵣ = 〈∇,E〉 

J = ∇× B −∇ᵣE 

∇ᵣ B = −∇×E 

Two quite similar second order partial differential operators exist. The first is described above. 

(∇ᵣ∇ᵣ + 〈∇, ∇〉) ψ = ρ 

This is still a nameless equation.  
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The second is the quaternionic equivalent of d’Alembert’s operator (∇ᵣ∇ᵣ − 〈∇, ∇〉). It defines the 
quaternionic equivalent of the well-known wave equation. 

(∇ᵣ∇ᵣ − 〈∇, ∇〉) ψ = φ  

Both second order partial differential operators are Hermitian differential operators.  

Solutions 

Waves 
f (τ, x) = a exp (i ω(cτ-|x-x' |));  c=±1 

solves ∇ᵣ∇ᵣ f = 〈∇, ∇〉 f = −ω² f 

Warps 
ψ = g(x i±τ) 

Clamps 
ψ = g(r i±τ)/r 

 

Except for ϕᵣ = ∇ᵣψᵣ − 〈∇, ψ 〉 the above equations remind of Maxwell equations. In 

common quantum field theory, the exception is treated as a gauge. Maxwell equations 

use coordinate time, while the quaternionic differential equations apply proper time. 
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